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ABSTRACT

This paper discusses resource utilization over the life
cycle of software development, and discusses the role
that the current “walerfall model™ plays in the actual
software life cycle. The effects of prototyping are
measured with respect to the life eycle model.
Software production in the NASA environment was
analyzed to measure these differences. The date col-
lected from thirteen different projects and one proto-
type development were collected by the Sofiware En-
gincering Laboratory ot NASA Goddard Space Flight
Center and analyzed for simularities and differences.
The results indicate that the waterfall model is not
very realistic in practice, and that a protolype develop-
ment follows a similar life cycle as a production
system--although. for this prototype, issues like system
design and the user inlerface took precedence over is-
sues such as correciness and robusiness of the result-
ing system.

KEYWORDS: Life cycle, Measurement, Prototyping,
Resource utilization, Waterfall chart

1. Introduction

As technology impacts the way industry builds
software, there is increasing interest in understanding the
software development model and in measuring both the
process and product. New workstation technology, new
languages (e.g., Ada, requirements and specification
languages) as well as new techniques (e-g., prototyping.
pseudocode) are impacting how software is built which
further impacts how management needs to address these
concerns in controlling and monitoring 8 software
development.

In this paper, data are first presented which analyze
several fairly large software projects from NASA God-
dard Space Flight Center (GSFC) and put the current
“waterfall” model in perspective. Data about software
costs, productivity, reliability, modularity and other fac-
tors are collected by the Software Engineering Labora-
tory (SEL), a research group consisting of individuals
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from NASA/GSFC, Computer Sciences Corporation, and
the University of Maryland, for research on improving
both the software product and the process for building
such software [SEL 82]. The Software Engineering
Laborstory was established in 1976 to investigate the
effectiveness of software engineering techniques for
developing ground support software for NASA [BAS 78].
A recent prototyping experiment was conducted and data
were collected which compare this prototype with the
more traditional way to build software. The paper con-
cludes with comments on the role of prototyping as a
software development technique.

The software development process is typically
product-driven, and can be divided into six major life
cycle activities, each associated with a specific “end pro-
duct” [WAS 83, ZEL 78]:

(1) Regquirements phase and the publication of a
requirements document.

(2) Design phase and the creation of a design docu-
ment.

(3) Code and Unit Test phase and the generation of
the source code library.

{4) System wmlegration and testing phase and the
fulfiliment of the test plan.

(5) Acceptance test phase and completion of the
acceptance test plan.

(6) Operation and Maintenance phase and the
delivery of the completed system.

In order to present consistent data across a large number
of projects, this paper only focuses on the interval
between design and acceptance test and involves the
actual implementation of the system by the developer
group.

In this paper, we will refer to the term actiuity as
the work required to complete a specific task. For exam-
ple, the coding activity refers to all work done in gen-
erating the source code for a project, the design activity
refers to building the program design, ete. On the other
hand, the term phase will refer to that period of time
when a certain activity is supposed to occur. For exam-
ple, the Coding Phase will refer to that period of time
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during a software development when coding activities are
supposed to occur. [t is closely related to mnnagemen?-
defined milestone dates for a project. But during this
period, other activities may also occur.
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Figure 1. Typical Life Cycls

The waterfall model makes the assumption that ail
activity of a certain type occurs during the phase of that
same name and phases do not overlap. Once a phase
ends, then the next phase begins. Thus all requirements
for a project occur during the Requirements Phase; all
design activity occurs during the Design Phase. Once a
project has a design review and enters the Coding Phase,
then all activity is Coding. Since many companies keep
data based upon hours worked by calendar date, this
model is very easy to track. However, as Figure 1 shows,
activities overlap and do not lie in separate phases. We
will give more data on this later.

2. The waterfall chart is all wet

In the NASA/GSFC environment that we studied,
the software life cycle follows a fairly standard set of
activities {SEL 81}:

The requirements activity involves transiating the
functional specification consisting of physical attributes
about the spacecraft to be launched into requirements for
a software system that is to be built.

The design activity can be divided into two subac-
tivities: the preliminary design activity and the detared
design activity. During preliminary design, the major
subsystems are specified, input-output interfaces and
implementation strategies are developed. During detailed
design, the system architecture is extended to the subrou-
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tine and procedure level. Data structures and formaj
models of the system are defined. These models inclyde
procedural descriptions of the system, dataflow deserip.
tions, complete description of all user input, system oy
put, and input-output files, operational procedures, fune.
tional and procedural descriptions of each module, and
complete description of all internal interfaces between
modules.

The Coding and Unit Test activity involves the
transiation of the detailed design into a source program
in some appropriate programming language (usually
FORTRAN). Each programmer will unit test each
module for apparent correctness.

The System Integration and Test activity validates
that the completed system produced by the coding and
unit test activity meets its specifications. Each module,
as it is completed, is integrated into the growing system
and integration test is performed to make sure that the
entire package executes as expected. Functional testing
of end-to-end system capabilities is performed sccording
to the system test plan developed as part of the require-
ments sctivity.

In the Acceptance Test activity, the development
team provides assistance to the acceptance test team,
which checks that the system meets its requirements,

Operation and Maintenance activities begin after
acceptance testing when the system becomes operational.
For flight dynamics software st NASA, these activities
are not significant to the overall cost. Most software pro-
duced is highly reliable. In addition, the flight dynamics
software is usually not mission critical in that s failure of
the software does not mean spacecraft failure but simply
that the program has to be rerun. In add:tion, many of
these programs (i.e., spacecraft) have limited lifetimes of
six months to about three years.

Table 1 presents the raw data on the fourteen pro-
jects analyzed in this paper. The thirteen numbered pro-
jects are all fairly large fAight dynamics programs, rang-
ing in size from 15,500 lines of FORTRAN code to 89,513
lines of FORTRAN, with an average size of 57.800 lines
of FORTRAN per system. The average work on these
projects was 80.0 staff months; thus, all represent
significant effort. The last project listed in Table 1 -
FDAS - represents a prototype development and will be
discussed in more detail later.

In most organizations, phase data are collected
weekly so that they are the usual reporting mechanism.
However, in the SEL, activity data are aiso collected.
The data that are collected consist of nine possible activi-
ties for each component (i.e., source program module)
worked on for that week. In this paper, these will be
grouped as Design activities, Coding activities (code
preparation and unit testing), [ntegration testing, Accep-
tance testing and Other. Specific review meetings, such
as design reviews, will be grouped with their appropriate
activity {e.g., a design review is a design activity, a code
walkthrough is a coding activity, etc.). This allows us to
look at both phase and activity utilization.



|_ProlEcT SZEAND STARE " +STHEFFORT |
PROJECT | SIZE (LINES TOTA.. -+ ¥ORT | STAFF-
NUMBER OF CODE} HOUR® MONTHS
1 13,500 17,718 1165
2 s0.911 12,588 828
3 61,178 17,039 1121
4 26,844 10,948 720
1 25,731 1,514 100
[} 67,325 19,478 128.4
1 66,260 17,907 118.4
[ ] + + +
L] 55,237 15,262 100.4
10 75,420 3,792 38.1
11 89,513 15,122 00.S
12 75,303 14,508 95.4
13 85,389 14,300 94.1
Average 57,890 13,522 89.0
FDAS 33,967 14,150 93.1

+ - Raw data sot available in dats bese )
o . All technical eflort including programmer and mansgement Lite

Table 1. Project Sise and Stafl-month Effort

The results of this can be briefly summarized by
Table 2. According to this, in NASA, 22% of a project's
eflort is during the design phase, while 49% is duriog
coding. Integration testing takes 16% while all other
activities take 12%. (Remember that requirements data
are not being collected here. We are simply reporting the
percentage of design, coding, and testing sctivities. A
significant requirements activity does occur.)

Design | Code | Int. Test. Other
By phase 22 49 16 12
By activity 25 30 15 29

Table 2. Activities performed in each phase (by %)

However, sctual activities differ somewhat from sim-
ply looking at effort spent between somewhat arbitrary
calendar dates set up months in advance. By looking at
sll design effort across all phases of the projects, design
activity is actually 25% of the total effort rather than the
20% listed above. Coding is s more reasonable 30%
which means that the coding phase includes many other
activities. “Other” increased from 12% to 29%, saod
include many time-consuming tasks that are not
accounted for by the usual life cycle. (Here, Other
includes scceptance testing, as well as activities that take
s significant eflort but are usually not separately
Edentiﬁable using the standard model. These activities
include meetings, training, travel, documentation, and
other various activities assigned to the project.)

) The situation is actually more compiex than shown
in Table 2. Although using Phase Date shows that total
design effort differs by only 3% from the design phase
eflort, the distribution of design activity throughout the
project is pot reflected in the table. These data are
presented in Table 3.
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Design | Code | Int. Test | Accept. Test
- 50 29 20 2

Table 3. Design Activity During Life Cycle Phases (by %)

As Table 3 shows, only 50% of all design work
occurs during the Design Phase and just under one third
of the total design activity occurs during the coding
period. Over one fifth (20%+2%) of all design occurs
during testing when the system is “supposed” to be
finished.

As to coding effort, Table 4 shows that while a
major part, or 70% of the coding effort, does occur dur-
ing the Coding Phase, slmost one quarter (16%+7%)
occurs during the testing periods. As expected, only a
small amount of coding (7%) occurs during the design
phase; however, it does indicate that some coding does
begio on parts of the system while other parts are still
under design.

Design | Code | Int. Test | Accept. Test
7 70 18 7

Table 4. Coding Activity during Life Cycle Phases (by %)

Similarly, Table 5 shows that significant integration
testing activities (about 34%) occur before the integra-
tion testing period. Once modules have been unit tested,
programmers begin to piece them together to build larger
subsystems.

Design | Code | Int. Test | Accept. Test
0 34 63 3

Table 5. Integration Activity during Life Cycle Phases

3. Prototyping

As can be seen, programmers readily flow from ooe
activity of a project to another--more like a series of
rapids and not as a discrete set of waterfalls. Any model
that does not reflect this cannot hope to accurately por-
tray software development. Boehm has proposed a spiral
model {BOE 86| of software development which takes
some of this into account. In addition, the concept of
prototyping has been proposed as an alternative concept.
The remainder of this paper will address the prototyping
issue.

The current model of software development is
becoming even more complex. As new techniques are
developed, how do they fit into the life cycle? For exam-
ple, pseudocode is often written to describe a design.
This pseudocode is often iterated in greater detail to
evolve into the source program. However, when does
pseudocode stop being design and when does it become a
source program! Prototyping is another technique which
doesn’'t ft into this model well. In a prototype. the
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developer builds some operational aspect of the system
and then evaluates the prototype with respect to some
criteris. Where does this coding and testing 8t? What
activity is this in the overall life cycle?

At NASA, s prototype was deveioped to investigate
implementation strategies for a new product. In this sec-
tion, the role of the prototype will be described and the
resulting data collected from building the prototype will
be compared with the historical life cycle data presented
in the preceding section.

A prototype Flight Dynamics Analysis System
(FDAS) was implemented by NASA/GSFC. Data were
collected during the development of the system. For typ-
ical flight dynamics software, which NASA has consider-
able experience in building, prototyping would be of lim-
ited benefit due to significant knowledge of how previous
systems were buyilt. However, in this case, FDAS was to
be a source code maintenance system to manage other
source code libraries. It woulid enable NASA analysts to
test new spacecraft orbit models by providing a human-
engineered common interface which could be used to
invoke other flight dynamics packages. Since it was
unlike previous NASA projects, and since NASA person-
nel had limited knowledge of exactly how to build this
system, FDAS was a good c¢andidate for prototyping.

The goal of the prototype was to understand the
problem domain better. As such, an early decision was
made to build the system with every expectation of
throwing it away. If part of the source program could be
transferred to the final system, then that would be
viewed as an unexpected bonus. After the prototype was
built, it would be evaluated and from this experience the
requirements for a production version of FDAS would be
developed. Therefore, the basic idea of the prototype
was to learn, and it fits into the life cycle as part of the
requirements phase of Figure 2.

This definition of prototyping differs from others
that view a prototype as a first reiease of a system. The
goal was clearly to be able to understand the problem
and not to generate useable source programs. [n another
study (BOE 84|, prototyping was viewed as an iterative
process converging on the final product.

We viewed the prototype as part of the requirements
analysis of the problem. However, since the prototype
was (o execute, it itself had a full development life cycle.
As Table 1 previously showed, since FDAS was almost
34,000 lines of code and took about 93 staffl months to
complete, it was a rather large project by itself.

FDAS was to be an interactive system. That meant
that the user interface was crucial. Because of this, it was
determined that the prototype should emphasize that
aspect of system design.

The prototype was buiit in FORTRAN for s DEC
VAX 11/780. In hindsight it is not clear that such an
implementation was the wisest. However, a8 the start,
the problem did not seem that complex, snd personnel
experience and available hardware and software lent
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Figure 2. Prototype as part of Software Life Cycle

themselves to s FORTRAN implementation. Since the
goal was to give the user a taste of what services the
system would provide, a screen simulation applications
package (e.g.. Rapid/Use [WAS 86]), a very high level
simulation, or a 4th generation language might have been
adequate.

The use of FORTRAN, however, did have some
benefits. For one, it gave the developers experience in
using FORTRAN in a type of text-processing application
for which they had little previous experience. One of the
reasons that the NASA group generally has high produe-
tivity is that they have had considerable experience in its
application area. By building the prototype in FOR-
TRAN, they were using Brooks' second system property
where he advises “plan to throw one away” (BRO 75|. By
building a first prototype in FORTRAN, mistakes would
undoubtedly be made. By planning on discarding the
prototype rather than patching it to correct errors, the
ultimate FDAS system should be more reliable and better
structured — even if it did not turn out to be cheaper.
This by itseif is s valuable property, al'.hotf;h it is not
clear that it is a measurable one on most projects.



A more important aspect of & FORTRAN imple-
mentation {at least with respect to this paper) is I.hnv.- the
FDAS prototype was a “typical” FORTRAN project.
Hence its life cycle characteristics and the dats that were
collected could be compared with many other projects in
the NASA database. This would not have been possible if
some other mechanism (e.g., simulation psckage of some
sort) were used.

- In the next section, the prototype will be evaluated.
However, here are some of our general conclusions. The
bandling of requirements differed from a production sys-
tem; FDAS requirements were incomplete when design
began. Unlike previous projects. they were not stated
precisely because aspects of the system were still an open
subject during development [ZEL 84); even identifying
the potential user community and its impact on t.h'e use:
interface and its eflect on “assumed computer experience
was still being considered. Dates for completion of each
phase were more flexible than in the historical data and
milestones were less rigid than in a production develop-
ment. During other phases, requirements were generally
modifiable which in turn affected all activities in esach
phase.

More time was spent in design. than is usual for a
typical project. Unlike other NASA projects, an exten-
sive review process took place simost weekly as design
decisions were made and altered. The coding and testing
eflorts had no formal review. Although status meetings
were held almost weekly, the developers placed less
emphasis on testing than with a production system; and
since the prototype had a very limited lifetime, festures
that seemed well understood but cumbersome to imple-
ment were deleted from the requirements. According to
the final report, coding took less time than in previous
projects but testing did consume the same amount of
effort. Very little eflort was spent on acceptance testing,
since the effective life of the prototype was short.

4. Evaluation of Prototype

In & manner similar to the 13 other NASA projects,
‘h_t FDAS project was analyzed by phases and activities
usiag data in the SEL database.

4.1. Phase Analysis

Data collection based on phases is shown in Table 8.

he eflort expended for design, coding, and testing were
fOrr(lJ.-lrlble. but potice that acceptance testing was only
;J 11 t:l'ilhe prototype effort, but 12.7% in the historical
duia Vith a limited lifetime, reliability was a limited
‘“ur:. As long as tl’{e.syst.em worked for evalustion, it
" ,,: ;‘qune. !3 addition, integration testing took 10%
" be:' o.rl (?G,o compared 1o 18%) in the prototype.
© believe this was mostly due to *schedule slippage” as

t ity
dl:e complex'nt) of the prototype caused activities to be
laved unti the end.

DEVELOPMENT EFFORT BY PHASE DATE
(13 Projects vs Protwotype FDAS)
PROJECT | DESIGN | CODE | INTEG. | ACC.TST
NUMBER (%) (%) ACT (%) (%)
1 208 386 18.5 243
2 16.2 48.4 19.3 16.2
3 218 479 17.4 12,9
4 359 308 245 0.1
H 18.2 68.8 13.0 0.0
[) 16.3 485.6 109 243
7 190 50.4 149 18.7
8 229 48.4 130 15.8
9 226 68.3 8.1 1.1
10 244 LIY ) 20.2 108
11 227 304 21.4 185
12 189 53.1 109 19.1
13 282 435 20.1 82
Average 22.0 49.2 16.2 12.7
FDAS 270 45.3 26.4 1.3

Table 8. Software Development Effort by Phase

4.2. Activity Analysis

In the previous subsection, we viewed effort by
phase date. Table 7 displays the actual activities of
design, coding and integration test eflort independent of
phase. In this case the results differ. Usually during the
design phase, coding and testing activities begins on some
modules, and in the code and unit test phase, additional
design activity continues. Integration testing begins as
soon as coding and unit testing of a component com-
pietes. Similarly, during the testing phase, any errors
that were uncovered might require substantial redesign
and recoding. Comparing with Table 6, we discover that
most NASA developments have additional design effort
later in the life cycle o raise total design eflort from 22%
to 25.8%. In the FDAS case, total design dropped from
27% to 25%, meaning that activities other than design
occurred in the design phase. In both cases. activities
other than coding occur during the coding phase since
actual coding activity was only 30.555 and 17.6%
respectively, as opposed to the 45+% of eflort of the cod-
ing phase (Table 6).

Comparing FDAS with the 13 other developments,
design eflort is comparable at 25%, but the code and unit
test effort and the integration test eflort were different.
Due to the wide variability of the “other” category of
Table 7, Table 8 presents the same data as relative per-
cent for Design, Code, and Integration testing only. This
shows the diflerences more clearly.

No formal review was performed on the prototype
during coding and unit testing. Because of the declsu?n
to delete hard-to-build but understood features that did
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DEVELOPMENT EFFORT BY ACTIVITY IN ALL PHASES
{13 ta_va Prototype FDAS)
DESIGN CODE . INTEG. OTHER
PRr?ljJE(m ACT (%) ACT (%) ACT (%) ACT(%
174 164 929 583
; 01 94 208 97
3 03 03 - 193 M1
4 T3 7 60 380
s 310 s 94 241
L] 149 21ns 240 3%2
7 2012 259 143 e
s 1o 139 23 ess
9 a3 as 109 (X}
10 n2 373 [ %] 184
1 293 no 172 28
12 237 03 240 59
13 ne W3 156 156
Averags 256 0SS 150 209
FDAS 250 176 25 1 323

Table 7. Softwars Development Eflort by Acuvity

pot eflect the FDAS evaluation, coding was quite
straightforward. Most of the easy coding was completed
in a rather short time, and the more difficult coding
aspects were simply not implemented. As Table 8 indi-
cates, at 26% coding, FDAS had the lowest relative cod-
ing effort of any of the 14 measured projects. The next
lowest was 30.8% and the average over all 13 was 42.2%.
In addition, while in most projects the design and
integration testing efforts were less than the coding
activity, in FDAS both were almost 50% greater than for
coding (about 37% for each compared to 26% for cod-
ing).

PER CENT EFFORT IN EACH PHASE
} 13 Projects vs_Prototype FDAS

PROJECT | DESIGN | CODE&UNIT | INTEG.
NUM ACT(%) ACT(%) ACT(%)

1 09 s 226

2 13 437 230

3 3.8 308 203

4 4.0 463 08.7

S 4«08 488 12.3

8 248 ise 39S

7 ns 428 238

8 32.2 40.7 271

10 46.8 45.7 07.5

1 78 40.1 221

12 252 494 258

13 8.6 43.0 18.4

Average 38.2 42.2 21.8

FDAS 3.9 208.0 37.1

Table 8. Relative Activity

This apparent short circuiting of coding, however,
appeared to have a detrimental eflect on testing, which
took a relative 37.1% of effort as opposed to 21.6% on
other projects. Only one other project (6) took as much
eflort (39%) and from Table | project 6 was the most
costly, where you might expect an excessive need for test-
ing.
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Based on the original productivity rate of 1.4 source

" lines of code (SLOC) per hour on most NASA projects

12

[BAS 81), FDAS with a size of 33,987 SLOC had a
productivity rate of 2.4 SLOC per hour. (Note: the aver.
age project size of 57.800 SLOC of Table 1 cannot simply
be divided by the average effort of 13,552 hours since
most NASA projects reuse some code from previous sys.
tems. Table 1 is total system size, and the productivity
rate is for new lines of code.)

4.2.1. Design Effort

A true picture of development can be achieved by
investigating actual activity during each phase.
Although design is supposed to occur principally during
the design phase, for both the 13 older projects and the
FDAS prototype s comparable one half of the total
design effort occurred during the design phase, and equal
amounts were distributed through the rest of the life
cyele (Table 9). This repeats Table 3 in more detail.
Only 2% of the design of FDAS occurred during the
acceptance test phase in the prototype, principally
because the FDAS acceptance testing phase was so short
and the few errors that were found did not get
redesigned and corrected. For the historical data, the
6.4% of design occurring during acceptance testing
represents errors found in testing that required source
code to be redesigned.

DESIGN ACTIVITY EFFORT IN EACH PHASE
[J3 Projects vs_Prototype FDAS)

PROJECT DESIGN CODE INTEG. ACC.TST.
NUM PHASE(%)] | PHASE() TEST({%) | PHASE(%)

1 418 N 100 14

2 336 312 9.2 K]

3 333 371 19.7 %9

4 453 326 2.0 0.1

S 174 69.1 138 0.0

[} 589 30.7 43 8.2

7 639 153 8.8 14.1

8 281 50.9 71 8.0

9 818 382 0.0 00

10 78 72 10 80

1 8.7 137 18.67 109

12 589 32.8 5.9 24

13 80.5 47 11.9 29

Average 49.2 41 10.3 6.4

FDAS 49.8 289 19.6 L7

Table 0. Design Acuvity Effort

4.2.2. Code & Unit Test Effort

The code & unit test activities in the prototype,
however, represent a departure from the older projects
(Table 10). Ta most developments, about 7% of the cod-
ing is completed during design (although it varied from
0% to 22% in the 13 other projects). Implementation
often begins as some components become completely

specified. However, with FDAS, due to its greater uncer-




inty, no coding occurred until the development team
:‘:l; und_erstood‘ the design, i.e., until the coding phase mrzcul‘l?}: ?ﬁﬂ?pﬂof%ﬁsucu PHASE
began. For most projects, 70% of the total code and ﬁﬁ—é%
unit test effort is in the coding phase, but in the pro.'.o- PROJECT | DESIGN | CODERUNIT | INTEG. ACC.TST
type almost 06% of the effort was during coding. Coding NUM PHASE(%) | PHASE(%) | TEST(%) PHASE(%)
often extends through acceptance testing, but with
FDAS's relatively light acceptance test, few critical errors 1 00 178 274 54.7
were found so little eflort was spent in recoding during 2 00 45.2 30.1 247
test. Coding and testing need to be carried out on the z 2:; ::: :;; 1:-:
full system for every change or modification of the M P 710 o8 00
design, but in Lhe prototype it was not necessary to code s 10 09 178 w05
4 7 0s 54.1 2.3 9.
the new design. s 29 338 19.2 :«f
9 0.0 [ X] 202 44
CODE & TEST ACTIVITY EFFORT IN EACH PHASE 10 00 3.1 415 185
[13 Projects vs Prowt e FDAS) ) 11 00 384 381 288
JT'_-LH 12 o1 37 224 “s
PROJECT DESIGN CODE INTEG. ACC.TST. 13 15 495 289 20.2
NUM PHASE(%) | PHASE(%) | TEST(%) | PHASE(%)
|_Ave 47 €34 26.1 258
1 14 78.3 1n3 0.1 FDAS 00 348 827 2.8
2 0.0 728 18.7 7.8 ; :
: s S:A’ e o8 Table 11. Incegrating Test Activity Effort
4 184 88 281 0.1
: :(l):i ::; :?; 18:: of the task. The acceptance test activity is low for the
7 13 739 156 8.2 similar reason that the prototype system had few users of
' 147 547 2o 9.7 short duration and therefore no detailed tests. On the 13
; 82 ;u :.; o.: collected projects, the Otber activities are distributed
:l g:: - 7322 g:l ;:z T~ more uniformly during all phases, including the accep-
12 0s 148 83 188 tance test where there is & need to test before actually
13 48 (L1 209 4.9 turning the system to the user.
Average 6.9 703 18.9 8.9
FDAS 0.0 93.9 41 0.0 OTHER ACTIVITIES EFFORT IN EACH PHASE
{13 Projects v totype FDAS)
Table 10. Code & Unit Test Astivity Effiort
PROJECT DESIGN CODE&TST INTEG. ACC.TST.
NUM PHASE(%) | PHASE(%) TEST(%) | PHASE(%)
4.2.3. Integration Test Effort 1 233 122 18.1 28.5
Integration test effort is distributed through all 2 00 0.1 26.4 84.8
Phases in the collected projects with more eflort (43%) 3 1.7 47.8 168 1.7
during the code & unit phase than in either the integra- ’ : “'; 30.2 238 0.0
tion phase (26%) or the acceptance test pbase (26%) ° ::', ::; 2;: 2:‘3
(Table 11). In general, almost 50% of all integration test- 7 144 518 (45 19.5
ing occurs during design and coding phases. In FDAS, 8 268 a7 114 144
this effort was delayed with about two-thirds of all ® 15.9 655 187 0.0
integration activities in the integration phase. This was :? ;f: :g: ::': g;:
due to delaying the integration until more pieces of the 12 a3 “s .6 1s
System were completed. 13 @S w0.0 127 14.9
1.2.4. Other Activity Effort A;:BAS. 3:: ;;: ::: l;::

The Other category consists of activities such as
travel, completion of the data collection forms, meetings, Table 12. Other Activities Effort
or training. While these sctivities are often ignored in
most life cycle studies, the costs are significant. Typi-
cally, about 20% of activities are in this category and of 5. Conclusions
the 13 measured projects, “other” consumed more than In this paper we have collected dats on many
one-third of the effort on 8 of them (Table 7). FDAS sofiware projects developed at NASA/GSFC and com-
used a comparable 32% “other”. As seen in Table 12, pared them with a new prototype development. By using
the. Prototype devoted more eflort to the design phase, data from the SEL database, it appears clear that the
mllnl)t for meeting, traveling, and training due to the software development process does not follow the water-
extensive unknown quality of the design at the beginning  fall life cycle. It also appears that the prototype develop-
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meat follows a similar life cycle pattern as otber software
projects. Although a single data point (the prototype)
does not give definitive answers, it does give some trends
that are of interest. i

Both spprosches have similar software life cycies,
but the effort distributed over each phase differs. The
coding in the prototype was more sd hoc, therefore test-
ing became more involved. Integration testing was
barder in the prototype because of the false assumption
that reliability was not a central issue. The production
developments devote more effort in coding than in testing
(Table 7). -

While not inexpensive, the prototype appears to be
successful. Several design decisions turned out to be
partially fsulty when the prototype was tested. The
buman computer interface has been redesigned.

In fact, after completion of the prototype, several
screen simuistion sysiems were used to model s user
interface, and s more hierarchical menu model was
developed. Without the FDAS experience, NASA might
have implemented a system where users had no real
experience until the large implementation wouid be too
far along to change adequately.

The underlying execution model of FDAS became
better understood. As s source code control system, the
separation of the FDAS code and the user’s flight dynam-
ics application code became clesrer. Most user programs
would be FORTRAN (st least initislly); however, other
languages (e.g., Pascal, Ads) would be used in the future,
while it would not matter to the user in what language
FDAS was itself written.

FDAS included s prototype preprocessor to add
abstract data types to FORTRAN. This preprocessor
was icitially tied directly to the FDAS implementation.
It is oow somewhat independent to allow for other
preprocessors later. The FORTRAN preprocessor, call
OPAL, for Object Programming Applications Language
[CSC 86|, is s more rational extension of FORTRAN

" with dats structures useful for flight dynamics applica-
tions, such as vectors, matrices, and quaternions. The
decision was also made to move sway from FORTRAN,
and the system itself is being implemented in Ada,
although it will initially process FORTRAN application
code.

A new production FDAS implementation would
avoid many potentisi pitfalls discovered vis the proto-
type. Currently the production version of FDAS is under
development, and its design has benefited greatly from
the earlier development. We will have to wait for com-
pletion before fully evaluating this process. It is quite
clear, however, that FDAS will be & much better product
that if the prototype had not been built.

Prototyping probably increases the cost of the sys-
tem, but it greatly increases its quality. It gives a flavor
to the end user of what the system can do and how it
can perform the task, especially in a nosofamiliar environ-
ment. It provides the developers a “second system™ effect
for perfecting a design.
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